

Faculty of Information Technology

Department of Software Engineering

Engineering of software, business processes and databases

Mariusz Hausenplas
ID number 10638

MSc thesis
Written under supervision of
Tomasz Pieciukiewicz, PhD. Eng.

Warsaw, July 2018

 A library supporting self-healing functionalities in
dynamic web applications

Wydział Informatyki

Katedra Inżynierii Oprogramowania

Inżynieria oprogramowania, procesów biznesowych i baz danych

Mariusz Hausenplas
Nr albumu 10638

Biblioteka programistyczna wspierająca samoczynną
naprawę dynamicznych aplikacji internetowych

Praca magisterska
Napisana pod kierunkiem
Dr. inż. Tomasza Pieciukiewicza

Warszawa, lipiec 2018

 1

Streszczenie
 Niniejsza praca prezentuje próbę stworzenia biblioteki programistycznej

wprowadzającej automatyczne mechanizmy naprawcze programu, przeznaczonej do

wykorzystania w dynamicznych aplikacjach internetowych. Opisane zostały zarówno

teoretyczne aspekty opracowywanego zagadnienia, jak i sam proces planowania, analizy oraz

implementacji prototypu narzędzia programistycznego. Praca została podzielona na cztery

części. W pierwszej części zawarty został wstęp oraz opis ogólnych założeń i celów pracy.

Druga część przedstawia teoretyczne opracowanie koncepcji i technologii istotnych z punktu

widzenia przygotowywanego projektu. Trzecia część opisuje proces projektowania oraz

faktycznego tworzenia biblioteki programistycznej. W czwartej części zawarto

podsumowanie oraz ogólne wnioski po zakończeniu projektu.

Słowa kluczowe: samonaprawiający się system komputerowy, testowanie systemów

komputerowych, monitoring systemów komputerowych

 2

Table of contents

1. Introduction 3

1.1. Structure 3

1.2. Goals 3

2. Theoretical background and State of the art 4

2.1. Software testing - motivations and techniques 4

2.2. Software monitoring - motivation and techniques 8

2.3. Self-healing philosophy 16

2.4. Dynamic web applications - motivations and basic architecture 20

2.5. Ruby as a modern dynamic, all-purpose programming language 22

2.6. The Ruby on Rails framework 25

3. Design and implementation section 28

3.1. Design 28

3.2. Implementation 33

4. Conclusion 46

4.1. Final overview 46

4.2. Appendix A - CD content 47

4.3. Appendix B – installation manual 48

5. Bibliography 49

6. Index of figures 51

 3

1. Introduction

 The following thesis aims to describe an approach to build a software library

supporting self-healing functionalities in a dynamic web application. Apart from

characterizing the design and implementation process of the tool itself, it also includes a

theoretical overview of technologies and concepts vital to the conception of self-healing

systems and the development of one.

1.1. Goals

 The main goal of this thesis is to illustrate and characterize the notion of a self-healing

software based on a functional prototype. Being an emerging concept in the field of software

engineering, the idea of introducing self-recovery mechanisms is especially common for

Internet-based applications. Therefore, in order to provide a meaningful example, the Ruby-

based Healer library was created. The paper includes the description of building Healer, a

tool designed to support automated recovery functionalities to be used with a dynamic web

application framework.

1.2. Structure

 The paper was divided into four sections. Firstly, the introduction part contains a

high-level outlook on the project, including the description of motivations and overall goals.

Secondly, the theoretical section focuses on concepts in software development which were

important to the outset of the idea of a self-healing system, along with the description of the

notion itself. The design and implementation part presents the entire planning and

development process which resulted in the creation of a working prototype of a library

supporting self-recovery actions in a web application. Finally, the conclusion sections

includes a summary as well as an overall synopsis of the work.

 4

2. Theoretical background and State of the art

 The idea of introducing self-healing elements to a computer program is tightly related

to older, well-established concepts of software testing and monitoring. Testing has quickly

transformed itself from a plain bug-detection process to a broad area covering comprehensive

and fully automated quality assurance, an idea which inspired the notion of a system able to

validate itself and perform automated recovery. At the same time, the introduction of

monitoring solutions played a key role in enabling the software’s diagnosis, being a key

element in self-healing process. Before introducing the self-recovery approach itself, both

testing and monitoring notions will be described.

2.1. Software testing - motivations and techniques

2.1.1. Brief history and evolution

The general concept of testing software which is undergoing development is as old as

creating production code itself - the developers may be considered “early stage” testers as at

some point the first program run needs to be performed in order to assess if the raw code is

actually delivering required functionalities, and if not - an appropriate fix has to be applied.

In the history of quality assurance, the time from the first examples of running software until

around 1956 is known as The Debugging-Oriented Period in which software validation was,

all in all, identical to debugging [GH88]. However, as the entire computer technology started

to become more powerful and accessible, the demands and complexity of newly built

software systems increased as well. With the dawn of large-scale, multinational software

manufacturers along with plethora of other smaller businesses, there came a need to perform

assessment of code currently being developed in a continuous, professional manner.

It is noted that starting from the early 1970s, test engineering has become an

important counterpart to production code development itself. At first, independent Quality

Assurance specialists started to be sought after by software development companies.

Additionally, this period of time was marked by the overall growth of software testing

culture, particularly fueled by the increased number of scientific papers and magazine articles

as well as establishment of regular meeting and publication of standards related specifically

to software quality assurance.

 5

In the following years, testing has become a vital part of the entire software delivery

process. Several methodologies were brought out in order to define and effectively manage

quality assurance practices. In 1985, the Systematic Test and Evaluation Process (STEP) was

introduced, as generalization of the IEEE testing process which was undergoing development

a year earlier. First of all, STEP highlights the fact that quality assurance should take place at

the same time as development does. All processes described in STEP are to be conducted

parallel to production code preparation. In particular, planning, analysis, design,

implementation, execution and maintenance are considered equally important on both testing

and development side. More importantly, STEP puts emphasis on careful design and

preparation of tests as early as during the design phase of software itself. This idea results

from an observation that clear formulation of test cases (which refer to specific examples of

system’s usage by nature) helps answering certain questions about the project as well as

identifying possible contextual flaws which may not have been thought through in the earliest

stages of the software’s architecture layout, especially when prepared by employees not

directly engaged in the development of production code. Consequently, properly defined test

cases may not only serve as means to improve the overall quality and stability of the final

product, but even document the software by providing examples on sample usage, as if they

were performed by the analyst, manager or even the end user.

2.1.2. Agile methods

Systematic Test and Evaluation Process is one of the earliest software methodologies

which highlight the need to introduce quality assurance-related elements to the earliest stages

of software design and development. What’s more, it is also one of the first to recognize the

fact that software requirements and architecture may change during the course of

development, not only in the preliminary phases. Nonetheless, it is the Agile philosophy to

software development which explicitly stresses the inevitability of the fact that requirements,

and, consequently, system architecture and functionalities will change over time.

Published in 2001, The Manifesto for Agile Software Development (The Agile

Manifesto) formulated some general ideas about “lightweight” approaches to software

development, as opposed to the traditional “waterfall” model in which conception, design,

analysis, building and verification take place one after another, in a linear fashion [BT76]. By

acknowledging the necessity to adapt to changing requirements, authors of the Agile

manifesto conceived an iterative solution. All elements present in the “waterfall” model are

 6

still there, yet their place in the entire scenario is different. During the course of system

construction, specification, analysis, production code development, testing and deployment

are all being repeated multiple times in short intervals. Every phase must result in a viable

outcome whose correctness has been assessed by the testers. Finally, as it is assumed that

requirements may change, the breakdown of the process into multiple stages enables to

quickly remodel the product according to current needs, with minimal effort. Figure 1

illustrates basic differences between both models.

Figure 1. Waterfall and Agile software development models

 The testing phase plays an important role in Agile philosophy. It is a crucial element,

as quality assurance is the ultimate step assessing the validity and correctness of the output of

each iteration. Test cases are prepared as early as the production code itself and reflect actual

use cases to be performed by customers. Similarly to STEP model, test examples serve as

documentation which is to lead the developers to writing production code meeting the

defined expectations.

In response to great demand and responsibility put on quality assurance, the Agile

Testing Quadrants model was devised in order to successfully plan and perform testing in an

Agile process [Marick03]. The main idea behind this concept is to roughly define and

categorize the overall target and desired outcome of quality assurance. The model considers

tests as either business facing or technology facing as well as either focusing on product

critique or supporting programming. Those approaches can be described as follows:

● business facing tests are strictly related to the product’s use cases and functionalities

desired by the customer, while technology facing tests aim to assess specific code-

level tools and choices related e.g. to the utilization of a particular mechanism

 7

● tests supporting programming are part of production code in their entirety. They serve

as means of code verification on the lowest layer of abstraction. Tests focusing on

product critique do not consider tools used internally. Instead, their role is to identify

flaws and inconsistencies in a ready product.

 Figure 2 presents the original matrix. Most importantly, it can be observed that test

supporting programming are in fact “positive” in a way that their purpose is to boost

development and ensure correctness of the final product. On the other hand, the “negative”

critique tests aim to uncover bugs and overall mistakes, without providing any specific value

to the developers, yet are often crucial from business point of view and reflect the actual

customer’s experience.

Figure 2. Agile Testing Quadrants matrix

2.1.3. Testing levels

 As described in previous sections, quality assurance of a software product is an

integral part of the entire development process and its aims usually reach far beyond directly

focusing on finding possible faults or examining desired use cases. For example, both STEP

and Agile methodologies instruct the team to define and perform tests against a system even

at its earliest phase, when no user interface may exist. At the same time, it is obvious that

team leaders, management or the client may expect a full-blown, end-to-end test suite to be

performed on a running system. Therefore, several levels of tests have been defined,

depending on their internal characteristics, location in the project’s stack, desired outcome as

well as other criteria [SWEBOK14].

● Unit tests focus on assessing the smallest building blocks from which the system is

built. They are created by production code developers in order to support building of

 8

the system on the lowest possible level - by verifying the behavior of single functions

and classes (in an object-oriented software environment);

● Integration tests whose aim is to evaluate multiple system modules operating together

forming a “bigger whole”. It is important to note that those single elements have

already been verified individually in a unit test. Only that can the integration tests be

introduced to assess the entire component;

● System tests are prepared and executed in order to fully evaluate the entire integrated

system against initial requirements;

● Acceptance tests which serve as “definition of done” for the complete software. The

success of acceptance tests phase determines whether the system meets all the

required criteria and if it can be handed over to the customer, client or other

responsible party.

2.2. Software monitoring - motivation and techniques

2.2.1. Measurement in software engineering - motivation and

techniques

 At some point in time, most complex, continuously running software solutions require

some kind of monitoring scheme in order to control and assess their overall performance.

Even though it may seem possible and enough to review system data by manually accessing

files such as application logs, a most common approach to software monitoring involves

setting up of a system-external tool focusing only on the process called Application

Performance Management (APM). Responsibilities of an APM module vary depending on

project type and the tool in use. Considering a standard server-side web application as an

example, they would typically include measurement and aggregation of important

performance metrics such as response time, number of requests in a given time frame, error

rate, database query time and many others.

From a high-level perspective, the entire Application Performance Management

process is vital both for the correct evaluation of the system from the technical and

infrastructural point of view, but may also support decision-making in other areas not strictly

related to the software’s technical aspects [HvHMO2017]. It is obvious that statistical data

may lead to the identification of e.g. a slowly-running component which would provoke

fixing of a bug or redesign. On the other hand, providing insight into valuable data on the end

 9

users’ interaction with the system and their overall experience can certainly influence altering

and further development of user interface, information architecture, or any other information

presented to the user, therefore influencing the software from a business-oriented side.

The general approaches to Application Performance Management may be

characterized in various ways depending on their positioning in the entire system stack. It is a

common practice, and similar to the Agile Testing Quadrants model, to divide application

monitoring engines into groups based on their connection with either technical or business-

specific requirements. Gartner, a leading advisory company in the IT industry, proposed the

following classification of APM dimensions:

● Top-down monitoring;

● Bottom-up monitoring;

● Business Transactions monitoring;

● Deep Dive Component monitoring;

● Analytics and Reporting.

Top-down monitoring (also called Real-time monitoring) puts emphasis on gathering

and aggregating data on the application itself, running in real-time. The typical “active”

method involves performing several runs of an external testing program (often called a

“robot” or “probe”) which tries to simulate a real user interacting with a system. On the other

hand, it is possible to introduce agentless (“passive”) monitoring in which only the response

times on network ports are gathered. Usually combining both approaches, Top-down

monitoring provides best insight into the end user’s interaction with the system due to a

possibility to record traces of actual usage and the software’s end-to-end performance. It is

roughly estimated that 80% of the business value resulting from introduction and usage of an

APM solution comes from the proper design and setup of Real-time monitoring system

[Dragich12];

On the other hand, Bottom-up monitoring is located on a lower, infrastructural level

and aims to gather data on overall hardware and network performance. It is also used to

provide metrics collected when surveying e.g. the functioning of an operating system along

with the whole environment in which an application may be running. This represents a

traditional approach to system monitoring where no additional code needs to be included in

the application, yet making it impossible to clearly measure the customer’s actual interaction

and end-user experience.

Business Transaction monitoring supports a functionality of collecting data on

specific system functionalities or use cases in order to provide outlook on the software’s

 10

performance of usage scenarios vital from the business perspective. For example, it may be

important to observe the performance of a “reservation”, “ordering” or “payment” module

which may be crucial for the evaluation of the business’s health and success, therefore

serving a Key Performance Indicators (KPIs). What is more, in the case of business-to-

business solutions, it is a common practice to define certain Service Level Agreement (SLA)

points based on aggregated metrics collected for specific business transactions;

Similarly to Top-down monitoring, Deep Dive Component monitoring traces the

performance of application middleware. Most commonly, it is carried out in an “active”

fashion by including an external library within the software whose responsibility is to

measure and collect various performance and availability metrics as well as e.g. error reports.

The results of Deep Dive Component monitoring process should include detailed information

on every code executed within the scope of a particular use case. For example, in case of

typical client-server web application it would be expected to acquire performance data of a

single HTTP request from both the back-end and front-end framework code, along with all

external calls made by the system;

Finally, Analytics and Reporting component aims to aggregate collected data into

statistical metrics which are to be used by to improve the overall end user experience. Any

industry-grade APM tool includes a module responsible for e.g. discovering and alerting

about slow transactions, large error rate as well as full or partial service unavailability. Most

importantly, it would also offer the functionality to present interactive KPI dashboards and

generate reports understandable for both the technical team as well as business management

in order to make specific decisions about the product.

2.2.2. Software monitoring tools

 Due to the continuously dynamic growth of the software industry and, therefore, high

demand for professional Application Performance Management tools, a large number of real-

time monitoring software has become available depending on desired level of detail, location

in the application stack and overall functionalities. The following section contains a

comparison between most popular, state-of-the-art APM solutions used in different kinds of

software projects.

 New Relic APM is a complex, fully-featured tool suited to perform real-time

monitoring of web applications. The solution comprises two main elements: an agent

included in the software which intercepts ongoing traffic and a cloud-based application

 11

hosted by New Relic itself which plays the role of a server, accepting, aggregating and

visualizing data transmitted by the agent in the specified time window. The New Relic server

offers insight into the system functioning on all dimensions pointed out by Gartner, with all

data presented in forms of interactive graphs, tables and lists displayed on a dashboard-like

panel.

A particularly strong focus is put on Top-down monitoring and measurement of end-

to-end performance. For example, the “End user” response time metric is calculated and

displayed explicitly, along with other, more specific data such as app server response time,

throughput and error percentage. What is more, in case of modern dynamic web applications

heavily using JavaScript and AJAX, New Relic offers the ability to show even more

performance data strictly related to end user experience. These include: page loading time,

page loading throughput, AJAX response time, AJAX throughput and number of JavaScript

errors.

Due to its user-centric nature, the basic New Relic APM solution supports only a few

metrics from the Bottom-up dimension. The most essential available infrastructure

performance data are memory consumption, internal databases and storage services activity

overview and calls to external web resources, all being displayed in the form of simple

graphs. New Relic does offer a separate product called New Relic Infrastructure which allows

to monitor the overall health of an entire infrastructure stack in a complex way. However, the

detailed explanation of this service is beyond the scope of this description.

Business Transaction monitoring is one of the most important and well-developed

features of New Relic APM. Not only does the tool allow to browse the most time-consuming

transactions, but it also stores traces of individual slowest calls, thus greatly simplifying the

process of identifying and debugging specific long-running calls impacting the end user’s

experience. What is more, it is possible for a New Relic APM user to define a general

performance metric called Apdex score which reflects the combined performance of selected

key transactions, often described as the “measurement of satisfaction” of the end user,

therefore bringing more value to the Top-down monitoring dimension functionalities. The

algorithm to calculate Apdex is constructed by defining a t value being a threshold indicating

the maximum acceptable response time, often set to 0.5 seconds. Every key transaction is

being categorized as either being “satisfying” (response time below t), “tolerable” (response

time between t and 4t) and “frustrating” (response time greater than 4t). Then, the final

Apdex score is being calculated according to the following formula.

 12

!"#$%	 = 	()*+$,	-.	/012/.32(4	,$5)$/1/	 +	 (()*+$,	-.	1-8$,0+8$,$5)$/1/	/	2)1-108	()*+$,	-.	,$5)$/1/

Basing on the current Apdex score, New Relic APM allows to set up custom alert policies

indicating poor performance or system unavailability. For example, an email, text message or

a notification to an intra-company messenger could be sent to interested parties as a result of

low Apdex score within a given time frame.

Features belonging to the Deep Dive Component dimension are also well-represented

in New Relic APM. First and foremost, every part of code executed as part of a transaction

can be recorded in the system and easily accessed for further review. This data is displayed as

a graph or a table showing average time spent in given component for a defined time

window.

Figure 3. Sample New Relic transaction breakdown

Figure 3 presents a breakdown of a sample HTTP GET request in the form of a graph as well

as a table. Both views include information on time spent in a specific component:

middleware, Ruby, Redis, PostgreSQL, Web external and overall response time.

Additionally, table view contains data on average number of a given component calls (e.g. a

particular PostgreSQL SELECT query) in a selected transaction. Yet another important

feature from the Deep Dive Component dimension which is particularly helpful in solving

 13

performance problems is the ability to track individual transaction traces with an

exceptionally long running time. New Relic APM stores such calls along with detailed

profiling results, such as in-depth function calls breakdown, actual database access logs and,

in fact, an arbitrary set of key-value attributes which can be defined programmatically by the

agent library. These could include IDs of accessed records, HTTP request headers, or

anything else which may speed up debugging process.

 In terms of Analytics and Reporting, New Relic APM offers standard means of data

summarization in forms of Availability, Web transactions, Database and Background jobs

reports, serving as an outline of the overall performance (measured by response time,

throughput and error rate) in a given time window, all prepared in a unified, tabular format.

More importantly, the software includes a separate analytical module called New Relic

Insights. Not only does it allow to create custom graphs and complete dashboards, but it also

exposes an interface to perform advanced retrieval and aggregation of data collected by the

monitoring system. The interface in question is a console accepting commands prepared in a

specially designed New Relic Query Language (NRQL). NRQL supports statements in SQL-

like syntax, but expands on standard “SELECT” functionality by including multiple APM-

specific clauses. Therefore, a following query would need to be prepared in order to retrieve

number of page views (note the atypical SINCE and AGO keywords and built-in PageView

metric).
SELECT count(*) FROM PageView SINCE 1 day AGO

Furthermore, it is also possible to visualize the result in a form of a graph by invoking a

specific function, taking advantage of chart-plotting functionalities inspired by analytical

languages such as Matlab. Figure 4 presents the result of performing the following NRQL

query, indending to plot a histogram of page views duration.
SELECT histogram(duration) FROM PageView SINCE 5 days AGO

 14

Figure 4. Histogram query result in New Relic

2.2.3. Continuous Integration and Continuous Deployment

On the boundary of testing and monitoring lies the area of Continuous Integration

(often extended by the similar concept of Continuous Validation). This process has

increasingly gained importance in the overall course of software development, especially due

to the rise in popularity of Agile methodologies as well as growing complexity of systems.

The core concept of Continuous Integration is to define a set of automated procedures

whose aim is to assess the correctness and quality of every new piece of code which is to be

included within the system, thus greatly reducing the risk of encountering problems during

the integration of sub-modules created by different contributors. This idea was first presented

as part of the Extreme Programming (XP) methodology (which is heavily inspired by The

Agile Manifesto) and initially only stressed the necessity of a programmer to always run the

entire set of unit tests before committing new code in order to ensure that changes will not

affect the functioning of other parts of the system, hence the Continuous Validation alias

[Beck99].

As new testing and monitoring tools emerged over the years, it has become common

for large projects with multiple collaborators to have a dedicated Continuous Integration

server set up and integrated with the general workflow. Consequently, every new proposed

contribution to the system may be assessed against multiple quality metrics and an

appropriate notification or alarm may be issued if new code doesn’t meet the required

 15

standards. Some of the typical procedures performed during Continuous Integration phase,

excluding the usual unit test suite run, are listed below.

● static code analysis to verify code styling or check against the usage of best practices,

possible deprecations or security violations,

● profiling and performance assessment of most important business transactions,

● generation of documentation files,

● generation of test run metadata which can be used by external analytical tools or to

create simple comparison visualizations,

● building and deployment of a new application version to a development or test server

to be handled over to the Quality Assurance team.

 Nowadays, one of the most commonly-used Continuous Integration tools in use is

Jenkins. Being an open-source, server-side tool written in Java, it allows for easy

customization and can be simply adjusted to fit the project’s requirements in terms of commit

validation. In essence, the only two actions that Jenkins requires is the definition of when and

how to access new changes in code as well as what is the set of procedures to be performed

against those changes. All may be either specified in the server’s configuration or included in

a single text file, named Jenkinsfile, located in the project’s directory. Technically speaking,

Jenkinsfile is a program written in the Groovy language designed to contain a definition of a

“Pipeline” serving as a step-by-step scenario of tasks to be ran in different phases, as in the

example in the table below [JenkinsDocs].

Stage Tasks

Code fetch Call a remote repository to download new
code.

Unit tests run Run unit and integration tests suite.
Generate output files for analytics.

Static code analysis Run code style and security checks.
Generate output files for analytics.

Build Run a script which generates a ready
executable file or a package.

Deployment Deploy a package to a remote server. Send
email notifications.

Table 1. Sample Jenkins build steps

 16

2.3. Self-healing philosophy

2.3.1. Definition and motivations

 The notion of a self-healing system is a relatively new subject in the area of software

development, which, throughout the years, has put more focus on traditional verification and

assessment tools such as testing and monitoring. However, as requirements, and, therefore,

systems themselves grew more complex, it has become a natural consequence for software

creators to include elements of self-validation and automated recovery. This evolution is

certainly not unexpected, as comparable trends have become visible in the course of

maturation of other industries - many examples of successful usage of internal monitoring

and recovery system can be found e.g. in automobile and aerospace industries or even in

common elevators.

 In general, a self-healing software system is one which is able to detect and react to

either a direct fault (e.g. an unresponsive server node or an exception raised in one

application thread) or a problem which may be discovered by performing analysis of various

statistical data gathered in runtime, such as large database access times or slow transactions

[JZRS2007]. It is assumed that a reaction to one of those issues will get rid of the problem for

a reasonable amount of time, so that the system is back into operational state. Consequently,

it is required of such a software to have both the definition of a set of possible problems as

well as knowledge of what actions need to be performed in reaction to an occurrence of a

predefined issue, thus greatly expanding on the general expectations one would have of a

typical Application Performance Monitoring solution.

 Speaking about the motivations for self-healing systems, it can be observed that

despite the world-wide popularization of software systems, together with ongoing evolution

and conception of modern programming languages and other similar tools, most computer

programs still tend to be unstable, prone to crashes, with plenty of security problems and

other bugs [Keromytis03]. The failure to deliver a safe and highly robust programming

language (or any other kind of software-building tool) may have been the reason for the

conception and rise in popularity of the Test-driven Development (TDD) methodology. The

main rule of TDD states that a programmer should first prepare specific test cases for a

functionality being developed in order to ensure the correctness of assumptions and overall

validity of a feature, and only then can the actual production code be written. This philosophy

turned out to be highly effective and has been demonstrated to improve the overall quality of

 17

a ready product in numerous studies. On the other hand, TDD has a very clear and inherent

limitation in the sense that the software is eventually verified and validated only in the scope

defined in the test cases. In any system with at least a slight degree of complexity, it is

impossible to prepare unit tests which assess every possible way the system can be interacted,

or every possible state the system can find itself in. Understandably, the idea behind self-

healing software does not assume that a system will become fully resilient to any imaginable

fault, but it certainly aims to introduce a dynamic, thus more flexible alternative to traditional

means of testing in order to cover a subset of those cases which may have been overlooked in

unit tests or in the quality assurance phase.

2.3.2. Classification of faults

 Any computer program, let alone a complex software system, runs in some kind of an

environment which is shaped by elements such as the application’s internal configuration,

underlying operating system and specifics of the hardware. Therefore, in the course of

program run time, various kinds of errors may appear on different infrastructure levels and

have an immediate effect on the application. Self-healing software tools should be able to

detect and address those problems. Below is the typical classification of errors depending on

their position in infrastructural stack [TechConversations].

● Application-level errors

● System-level errors

● Hardware-level errors

 Application-level errors are the most ordinary and common faults resulting from a

certain bug existing in the software’s source code itself. This bug is usually introduced by the

program developer, but may also have been present in an external library used in the

application or even in the programming language compiler or execution environment. Such

problems usually manifest themselves in the form of an exception thrown in the course of a

program execution - a typical example would be an ArrayIndexOutOfBoundsException raised

as a result of accessing a non-existent index of an array. The usual approach to deal with this

problem is to secure a potentially dangerous code in such a way that should the given

exception be raised, a program will continue execution after a special procedure invoked to

handle the error. This procedure may include altering of application control flow as well as

logging of an error message in order for the application thread to continue functioning and to

 18

prevent exception propagation, resulting in e.g. an HTTP 500 Internal Server Error page

displayed to the user.

 Compared to the regular application exceptions handling, the concept of introducing

self-healing components on system-level is a much broader and more general subject. At this

point the assumption is that recovery mechanisms should affect the entire range of

independent applications constituting the complete system, yet at the same time not aiming to

tackle singular errors appearing on individual services. From this wider perspective, out of a

great variety of faults which may take place, system-level monitoring and healing mainly

focuses on problems with long response time and unavailability of particular components.

Fixing slowly running web nodes usually involves the scaling of infrastructure resources such

as memory, disk space or CPU power. Furthermore, it is also common to perform typical

maintenance tasks such as identification and removal of hanging database connections or

forcing a garbage collector run to free up memory. When it comes to dealing with a full

breakdown of a service, usually a restart is triggered after a series of unsuccessful “ping”

requests indicating the unavailability of a component. If the issue persists, interested parties

should be alerted, as human intervention is necessary.

 Self-healing on hardware level is a more abstract idea, as for obvious reasons it is

impossible for e.g. a hard drive or a CPU to self-repair in case of a strictly hardware-related

error. Therefore, the monitoring and fixing of hardware components is usually carried out on

the system-level. Similarly, the functioning of hardware parts should be monitored to

measure and assess their availability and performance. In case of a problem, a restart

command would usually be issued, together with appropriate alerts, notifications and logs.

2.3.3. Approaches to self-healing

 In addition to the intuitive classification of self-healing tools based on types of

expected faults, it is possible to divide them depending on the point in time when recovery

action happens. Two basic approaches can be distinguished [TechConversations].

● Reactive healing

● Preventive healing

 Reactive healing paradigm assumes recovery action happens right after an incident

has been detected, in direct response to the problem. This is the simpler and more common

approach, as it only requires the definition of an “unhealthy” state of the system along with a

prepared recovery mechanism. Theoretically speaking, it is possible to achieve a zero-

 19

downtime architecture using only the tools from the reactive healing area. Taking system-

level monitoring as an example, it would be enough to have a system in which every service

is duplicated and has both applications running in parallel. Whenever one node is discovered

to be unavailable, a server management software would instantly re-route all incoming traffic

to the other instance. In the meantime, the failing service would be restarted and, ideally,

brought back to operational state. Understandably, such an approach would still fail in case of

e.g. a hardware malfunction or power loss in a data center and in order to decrease the risk of

a similar event, a geographic distribution of system nodes would be required. Nevertheless,

due to their simplicity and straight-forward design, reactive healing tools are by far the most

commonplace and effective means of guarding the availability and performance of any

system aiming to achieve minimum downtime.

On the other hand, preventive mechanisms aim to address problems in a much longer

time frame by the application of various analytical and heuristic methods whose role is to

identify and fix issues which may appear in the near future. Most importantly, a preventive

healing tool would not be concerned with a full unavailability of a service. Instead, it collects

and analyses performance metrics, usually throughput, response time and error rate.

Whenever one (or many) of those attributes reach a defined threshold, an interim action is

performed while the system is still operational, as it is assumed that performance problems

may escalate, eventually resulting in downtime, unless a corrective activity is executed.

Preventive actions may be performed both on application and system level. For example, in

case of a high number of exceptions, it would be reasonable to alter the control flow of

specific transactions in the application itself. At the same time, the system-level response to

growing response times would be the scaling of node’s resources such as virtual memory or

the number of CPUs. Furthermore, even the whole service could be scaled as a response to a

peak of incoming traffic, so that new requests would be routed to more than one running

application instance. The latter approach proves much more effective in the case of a

distributed system architecture, as it is much simpler and safer to duplicate nodes working as

fully separated, decoupled and lightweight microservices as opposed to a single monolithic,

mainframe-like application.

 20

2.4. Dynamic web applications - motivations and basic

architecture

 Nowadays, due to the enormous development and popularization of internet

technologies, the great majority of web pages may be called “dynamic”, as the content they

serve is usually somehow dependent on the user’s input and overall interaction. However, in

the context of self-healing paradigm, it is important to mention the definition as well as state

reasons to develop dynamic web applications. This is because of the fact that the most typical

and effective monitoring and self-recovery activities would usually be associated with actions

performed within an interactive, server-side system running in the internet.

 It is difficult to trace back the first usage of the term “dynamic web application”, but

it certainly appeared during the time when the early server-side scripting languages began to

gain attention. Traditionally, a static page would every time serve the same exact content,

usually in the form of ready HTML files which are either written “by hand” or pre-generated

using an external tool. Nevertheless, they would always look the same in the browser, as no

special business logic would be performed by the server as part of the response preparation

process. On the contrary, a dynamic web application would also return HTML files, but their

content would be created “on demand”, depending on the information passed by the user, or

in fact any parameterized data which could either be sent by the client, fetched from the

database or any other web resource [Nelson01]. Such a functionality is now intuitively

associated with any kind of web page, as it is extremely common to see internet applications

performing various calculations, e.g. the price of a plane ticket which depends on the flight

date, chosen class and numerous other parameters. However, the very first web pages were

strictly static, and this has only been changed by the introduction and spread of server-side

programming languages.

 As the name suggests, a server-side programming language is designed to build

applications located on the web server, or, generally speaking, on the system’s back-end (as

opposed to the front-end which relates to the client-side code). In particular, it allows to

create any kind of program which could be executed on a regular, “offline” machine and

inject it in the process of generating response from the server, which would now be different

that simply loading an existing HTML file from the disk. The early internet standard called

Common Gateway Interface (CGI), specified as early as in 1993, defined a protocol

supporting dynamic server-side processing [ServerScripts]. CGI scripts were usually written

in the C programming language and were executed by the operating system itself, as a regular

 21

program ran within the operating system’s shell. Afterwards, the results of execution were

then sent to the web server which could prepare a desired response to the client. Although

there still exist numerous services operating according to CGI specification, it has become a

standard for modern web servers to support direct code execution without the involvement of

shell. Taking communication using the HTTP protocol as an example, a program handling

client’s request would have access to all parameters, headers and any other data and would be

able to generate a response without employment of an external proxy. What is more,

applications running on the server generally offer all functionalities available for regular

desktop programs. In particular, it is extremely common to establish communication with a

database or external web services as part of request handling process. Figure 5 presents the

aforementioned flow.

Figure 5. Server-side request-response flow

 Finally, the table below includes a list of popular programming languages used in

back-end processing, along with their specific server-side implementations.

Language Server-side implementations

Java JavaServer Pages, Java Platform, Enterprise
Edition

C# ASP, ASP .NET

Python Flask, Django

Ruby Sinatra, Ruby on Rails
Table 2. Programming languages with corresponding server-side implementations

 22

2.5. Ruby as a modern dynamic, all-purpose programming

language

 As it was demonstrated that self-healing techniques most commonly tend to be

associated with a server-side application running in the internet, it is important to provide a

description of a typical back-end programming language, particularly in the aspect of those

features allowing for easy adoption of self-recovery mechanisms. Being a modern, all-

purpose technology commonly used for web projects, the Ruby programming language also

possesses some unique qualities which make it an interesting alternative to mainstream

solutions utilizing enterprise Java or .NET platforms.

 Ruby was initially designed and created by Yukihiro Matsumoto (knows as Matz) and

its first version was released in 1995, making it a peer of Java and JavaScript. However, the

development of Ruby language took a drastically different course, often summarized in the

popular saying “Matz is nice and so we are nice”. In the context of software development,

this motto aims to stress the fact that a programming language is primarily a method of

transmitting human intention to a machine, and thus should be designed in such a way so that

it is easy to learn, predictable, and, ultimately, should deliver satisfaction to the programmer.

According to Matsumoto, his main intention was to design a language which focuses on the

developer’s feelings during the process of code creation, rather than the strive to introduce a

truly all-purpose technology with almost limitless capabilities [RubyPhilosophy]. This

principle stands in sharp contrast to more low-level technologies such as C or C++ which

allow for a very fine manipulation closer to the hardware level (e.g. by enforcing manual

memory management) and thus demanding a greater technical knowledge from the

developers and maintainers.

 Below is the list of most important aspects of the Ruby programming language which

make it a good choice for a server-side application, particularly one which supports advanced

monitoring and self-recovery mechanisms:

● dynamic typing,

● modules,

● advanced metaprogramming capabilities.

 Most importantly, Ruby is a dynamically-typed (or simply: dynamic) language which

means that types of variables and other entities do not have to be explicitly specified in the

source code. As a result, the programmer is spared the necessity to declare complex interfaces

in order to create objects, thus greatly reducing the size of project’s codebase and, therefore,

 23

greatly shortening the time required to build a working solution which can be a crucial aspect,

especially in the earliest stages of system’s development. It has been demonstrated that a

component performing exactly the same actions written in a dynamic language could be as

much as 7 times smaller in terms of number of lines of code, compared to the one written in a

statically-typed language [Martin08]. On the other hand, programs written in a dynamically-

typed language possess an inherent feature of being interpreted and ran “on the fly”, rather

than ran compiled and executed from a generated binary file or other artifact produced in the

build process. This fact has two important negative consequences. Firstly, there is no way of

detecting errors as early as during the compilation phase, which could leave the resulting

program with bugs. Secondly, an application would generally run slower than the compiled

one as it needs to be executed along with the entire environment of an interpreter. A compiled

program is, by definition, designed to run on a specific target CPU, without the additional

overhead of an interpreter.

 Modules in Ruby serve as special constructs able to bring common traits to already-

defined classes or objects. Most basically, modules are simple class-like entities containing

functions, constants, and other “nested” classes. For example, if module Foo defines a

method bar, including Foo in a class Baz allows to invoke bar on instances of Baz. Even

though this may not seem like an important feature, modules have certain characteristics

which make them an extremely useful part of Ruby language. Firstly, they introduce the

possibility of safe name spacing of the application, as the entire content of a module would

not interfere with external entities bearing the same names: class Baz in module Foo

(referenced as Foo::Baz) would not be mixed up with a standalone class Baz (referenced as

::Baz) defined elsewhere in the application. Secondly, they serve as means to introduce

polymorphism. In the context of programming languages, polymorphism is a feature of

objects which allows them to have a common interface across multiple classes. A typical

usage can be demonstrated on a set of Car, Truck and Vehicle classes. Car and Truck objects

are different entities and it would be expected that they expose different methods. However,

they are all subtypes of a Vehicle, and at the same time they should answer to some shared set

of functions common to all Vehicles. In other words, Car and Truck exhibit polymorphic

behavior, as their interface combines “own” and external methods. In popular languages such

as Java or C++, this can be achieved by introducing an inheritance hierarchy: Car class would

inherit from Vehicle, thus acquiring all features of a Vehicle and, technically, becoming both

a Car and a Vehicle at the same time. While it is perfectly possible (and frequent) in Ruby to

 24

follow this pattern, it is also common to use modules as means of introducing polymorphic

qualities to classes, thus allowing to keep a simple, flat hierarchy of entities. In particular,

including more than one module results in an equivalent of multiple polymorphism which is

unavailable in Java and can only be realized using multiple inheritance in C++.

 Finally, the Ruby programming language possesses a large variety of

metaprogramming features, which additionally help with keeping the code shorter and easier

to maintain. In this case the term “metaprogramming” refers to the quality of a program to

retrieve, add, delete and alter data about the entities existing in the application itself, much

like the reflection mechanism found in Java. Below is the list of several most commonly-used

examples of metaprogramming capabilities.

● The respond_to? method can be invoked on any object and allows to determine if

a given method can be called on an instance. As object types are not specified by the

programmer, this is a simple way of making sure a correct function invocation will be

performed, thus improving on the program’s correctness and overall stability.

● The define_method method can be invoked on any class and allows to

dynamically extend its interface by building new function, without the need to use a

standard syntax. This technique is often performed when a number of methods with

similar name and exactly the same body has to be defined. Instead of explicitly

defining function one after another, it is easier to iterate the array of method names

and for each call define_method with a given body. As a result, a shorter, more

readable and less repetitive code is produced.

● instance_eval and class_eval methods are another methods common to all

instances and classes, respectively. They allow to dynamically alter the entities

definition and properties by injecting arbitrary code. This feature is especially useful

when a modification of an external library is required - a technique called monkey-

patching. Both functions require a special language construct called a block, which is

a way of writing a closure1 in Ruby. Any valid expression or structure may be put

inside a block. For example, the following snippet demonstrates the addition of a

method hello and code execution in the context of an existing object obj. Note that

inside the block, a regular Ruby syntax has been inserted, without the need to use

1 Closure – an entity in programming languages which serves as an inline function, including a given procedure
along with surrounding environment.

 25

define_method. Finally, an exact block can be passed to class_eval method

called on a class which would result in definition of a class (static) hello method.

2.6. The Ruby on Rails framework

Ruby on Rails, often shortened to Rails, is a web development framework designed to

take advantage of the possibilities offered by the Ruby programming language in order to

simplify and speed up the development of dynamic web applications, both on the back-end

and the front-end side. In order to achieve this goal, the technology attempts to undertake a

comprehensive approach to web development by adhering to specific architectural concepts

as well as including built-in modules [RailsGuides]. The most important features are listed

below.

● Model-View-Controller architecture

● Convention Over Configuration philosophy

● ActiveRecord library

 Model-View-Controller (MVC) is a software design pattern aiming to logically

separate specific parts of an application in order to keep the source code understandable as

well as easy to change and maintain [GHJV95]. This idea was first devised to improve the

quality of desktop application with a user interface, but was quickly adopted in both the web

and mobile development communities. Essentially, MVC assumes that components related to

the model (i.e. representation of program domain’s data), views (visual elements) and

controllers (modules connecting the previous two) should be fully isolated, so that e.g. no

database command or, in fact, any part of business logic, is executed in a presentation layer.

Rails enforces this policy by default. As a result, all definition of data-related classes are put

in models directory, while HTML templates need to be stored in views folder. In between

them lie the controllers files, being server-side components responsible for the handling of

obj.instance_eval do

 def hello

 return “hello”

 end

 print “hello method returns: “ + hello

 end

Listing 1. instance_eval demonstration

 26

HTTP requests by delegating work to model classes and modules focusing on business logic.

After processing is finished, a controller responds with data feeding the content of an

appropriate view which is rendered in a browser. By imposing the following architecture,

resulting code is more predictable and further development is simplified thanks to the clear

separation of files with fundamentally different responsibilities.

 Convention over Configuration (CoC) is actually a term coined by Ruby on Rails

creators themselves in order to describe an overall philosophy influencing the framework’s

design. Rails is described as a technology which is “opinionated” and usually enforces certain

patterns to be followed during the course of system development in order to speed up and

simplify the process [RailsGuides]. In general, this idea is devised from an observation that

the great majority of server-side web applications share a number of common components

and follow similar approaches, both in case of high-level system architecture and

implementation of standard functionalities. While the inclusion of MVC pattern is a

convention by itself, plenty of other framework parts are tainted by this philosophy. For

example, Rails requires that the app directory contains the entire application code. Therein,

the aforementioned models, controller, views folders should be placed, among others. Names

of database tables must be nouns in plural form, while corresponding model classes need to

have a matching singular format. Even some of the table’s column names are assumed to

follow a certain standard: the primary key column always has to be called id, while datetimes

need to finish with _at suffix, producing attributes such as created_at, updated_at,

last_seen_at etc. Although this approach may be considered as limiting to the framework’s

flexibility and adaptiveness, the adoption of CoC philosophy brings some important benefits.

Firstly, it implicitly makes the program adhere to the so-called Principle of Least

Astonishment which improves the overall ergonomic qualities of the source code by

introducing application-wide standardization. Secondly, it greatly reduces the necessity to

provide large number of configuration files: additional instrumentation is no longer needed

due to the fact that predefined conventions are being followed.

Finally, speaking about strictly technical aspects of the framework, Rails offers built-

in integration with popular relational database systems (MySQL, PostgreSQL, Oracle, among

others), as well as a non-relational database MongoDB. This is carried out by the use of the

ActiveRecord library which primarily serves as an object-relational mapper. As a result, it is

usually enough for a developer to include a basic database.yml config file, create a database

table and define a plain Ruby class which needs to have a matching name and inherit from a

dedicated ActiveRecord base class in order to set up the mapping. ActiveRecord classes and

 27

instances expose special proxy methods like create, where, update, destroy,

allowing to perform basic create, retrieve, update and delete (CRUD) actions on the database.

For example, calling User.where(name: “John”) would execute the following SQL

statement: SELECT * FROM users WHERE name = ‘John’. Rails would then

translate the query results into a collection of User class instances which can be easily used

in a program without the need to perform additional parsing. What is more, unless a raw SQL

statement is explicitly passed as argument, ActiveRecord ensures that the query input is a

valid and safe value, thus preventing from possible failures resulting from incorrect syntax or

SQL injection attacks2.

2 SQL injection attack – an attack aimed to exploit vulnerabilities in an application in which the program allows
to execute arbitrary, malicious SQL query without performing validation.

 28

3. Design and implementation section

3.1. Design

3.1.1. Project definition

 As in the case of most non-trivial software projects, a global plan had to be prepared

in order to describe the general requirements, architectural overview and the overall scope

and character of a product.

Most importantly, self-healing techniques have proven to be most commonly

incorporated into various server-side web applications, thus it became clear that a complete

solution must be designed to operate in this environment in order to be able to affect a

running backend system.

Secondly, an analysis has been undertaken in order to define the high-level aspects of

the tool’s architecture and relationship to the application in question. As a result, two possible

approaches have been identified, depending on the level of the system’s coupling with the

self-healing library. The first one involved the creation of a software which becomes an

integral element of an affected system. While all monitoring and self-recovery mechanisms

were assumed to stay logically separated, they would still technically be part of a subjected

system. Consequently, all activities related to data gathering, reporting and aggregation

would be performed in the host environment, resulting in a complex, tightly-coupled,

monolithic structure. The other approach assumed the introduction of a more relaxed,

distributed architecture in which the work performed on the subjected system’s side is greatly

limited. A client-server scheme has been proposed in which code executed on the host is

responsible for sending performance data to an external monitoring service, serving as an

APM tool, as well as receiving notifications with aggregated information which would then

be used to run a defined self-recovery action. Although the former solution contained obvious

disadvantages due to expectedly greater complexity and imposed overhead, the resulting code

would likely run much faster and turn out more stable as no communication with external

served were involved, which should be an important aspect of a dependable self-healing

system. Nevertheless, the latter approach has been selected, mainly due to the fact that

lightweight, distributed systems are, in general, considered to be much easier to develop and

maintain. For example, thanks to the loose coupling, no action would be required on the

 29

client side in case of a possible bug found in the analytical component which is a great

advantage contributing to the overall robustness of an entire solution.

Thirdly, the general requirements in terms of expected functionalities and the

project’s scope had to be defined. In order for the tool to be comprehensive and to be able to

bring an actual value it was determined that the software should put special pressure on

supporting system-wide self-healing mechanisms. The reason for that is the typical approach

maintained towards the program’s validation and monitoring which focuses on traditional

testing methods and rarely takes advantage of insights found in the APM component.

Recovery from exceptions on the application level is an intuitive and routine action

performed by the programmer during the course of a system’s development. On the other

hand, usually it is only the monitoring scheme alone which is established on the system level.

As a result, no aggregated feedback can be received from the APM tool, making the

application unable to deal with errors in a preventive way.

 Finally, as general architecture and requirements has been decided on, a more detailed

breakdown of components had to be performed in order to identify most important parts

comprising the tool. The client module was assumed to play the role of an agent, being able

to fully integrate with a monitored system as a plugin. This component could be injected into

the web requests processing stack in order to be able to intercept errors, transmit and receive

data to the server and react to notifications in a way defined by the host’s developer.

Internally, it was expected to be as lightweight and unobtrusive as possible so that it does not

cause additional delays to the running application by using up its resources. Most

importantly, it could by no means alter the application flow in an unwanted manner, i.e. other

than running the predefined recovery action. Such rigid constraints would generally not apply

to the independent server-side APM module, mainly responsible for receiving data passed by

the agent as well as enabling storing, aggregating and sending the information back. It was

concluded that a database would need to be incorporated into this component in order to

support gathering of long-term statistical data and fast processing, while the client-side plugin

should be considered a strictly in-memory tool.

3.1.2. Choice of technology

3.1.2.1. Client-side component

 The technology used to build the tool was primarily determined by the overall

character and expectations from the project. Firstly, the client-side agent would need to be

 30

seamlessly injected into a server-side web application code. Secondly, in order to support

self-healing mechanisms, it had to maintain high flexibility so that an almost arbitrary

recovery action could be performed by the application.

As a result, the Ruby programming language has been selected as the technology of

choice. Due to the popularity of Ruby-based web frameworks such as Sinatra or Ruby on

Rails, it has proven to be well-suited to operate in a server-side environment. In terms of the

problem of integration with existing application, Ruby also seemed to possess the desired

qualities. The language exposes simple and lightweight monkey-patching interface which

allows to dynamically alter the host’s code without producing additional overhead resulting

from the introduction of strict inheritance structure. Finally, the extensive metaprogramming

features, in particular the ability to generate methods in the program runtime, were assumed

to contribute to the simplicity and clarity of the interface allowing the definition of self-

healing actions.

3.1.2.2. Server-side component

 The server application could be written in any backend-side web technology as it was

assumed to function independently from the client module. However, it was decided that the

Ruby on Rails framework will be used as a core tool. The main reason for that choice is the

fact that the agent was assumed to function in a Ruby environment. The introduction of a

separate server-side technology would lead to unneeded complexity and the need to maintain

additional dependencies during the deployment process. For example, if (a possibly faster)

Java-based solution had been selected, it would have created the requirement for the host

application developers to include components such as Java Development Kit or a GlassFish

server, separate from the Ruby application setup. The deployment of two Ruby-based

application would be more economical in terms of obligatory dependencies and could prove

simpler and faster, as no expertise in other programming languages would be needed.

 The other reason to select the Ruby on Rails framework is related to the choice of the

database engine. While from the data architecture point of view it would be appropriate to use

a relational database such as MySQL or PostgreSQL, the expected large number of insert and

retrieve operations required the introduction of a non-relational solution due to concerns

about performance. The MongoDB system was selected because of its great popularity,

support from the ActiveRecord ORM included in Rails as well as better performance for

singular read and write operations on unstructured data [MongoArchitecture].

 31

3.1.2.3. Other development tools

 In order to enable easy maintenance, bug tracking and to prevent from accidental data

loss, both components have been included into the Git version control system. All source

code files were put into private repositories hosted on the Bitbucket cloud service in order so

that they could be accessible from any location, providing correct credentials have been

passed.

 Additionally, certain measures were taken in order to maintain common source code

style. The Rubocop library was used to enforce common code formatting guidelines.

Additionally, the Overcommit tool was installed in order to detect and inform about style

offenses before committing the code.

3.1.3. Project and source code organization

3.1.3.1. Client-side component

The standard way of including dependencies (including external plugins) in programs

written in Ruby is by the use of the Bundler project, which serves as a package manager.

Self-contained, shareable libraries running in Ruby ecosystem are called gems. Bundler,

being itself a gem, requires a special file called Gemfile in which names of all external

libraries are listed. Bundler loads those dependencies and ensures that correct, non-

conflicting versions are used, producing a Gemfile.lock file. After this process is done,

external libraries may be freely used in a program.

The client-side component was designed to be used as a gem and was assigned the

name Healer. Apart from including a basic gem definition file called healer.gemspec, as well

as .rubocop.yml and .overcommit.yml configuration files, a specific directory structure had to

be imposed. Figure 6 presents the expanded folder hierarchy in the agent library.

 32

Figure 6. Healer directory structure

3.1.3.2. Server-side component

 Due to the character of its responsibilities, the server-side component was assigned

the name Healer Server and was arranged in a standard way for Ruby on Rails applications.

As a result, it also includes Gemfile and Gemfile.lock files to manage dependencies and

comes bundled with the multithreaded Puma application server which serves as a platform to

handle external web requests, in particular those made by the Healer gem. As MongoDB

database was selected as information storage, rather than including the typical database.yml,

the configuration is present in the special mongoid.yml file required by the Mongoid library

providing ActiveRecord-compliant mappings with MongoDB structures. Figure 7 presents

the excerpt of the expanded directory structure, with most important files being displayed.

Note the clear separation of models, views and controllers files, in accordance to the Model-

View-Controller pattern.

 33

Figure 7. Healer Server directory structure

3.2. Implementation

3.2.1. Client-side component

3.2.1.1. Integration with host application

 The client-side library was designed as a Ruby gem, therefore the loading process

required listing of healer in the subjected program Gemfile and enforcing bundle update. As a

consequence, the host application acquired mechanisms to gather performance metrics of

incoming requests. This was achieved in a way standard to Ruby-based web projects, i.e. by

the injection of a custom-designed Rack middleware component. Being a tool providing

common interface to the processing of all types of web requests, the Rack library enables the

developer to define middleware classes which may arbitrarily alter the default behavior in

aspects such as errors handling, headers validation and others.

 34

The injection of a new Rack middleware depends on the architecture of the

application or the web technology. Due to its enormous popularity, Ruby on Rails was

assumed to be the most common solution which Healer could be integrated with. One of the

important elements in the framework is the strict definition of an initialization phase. Every

project includes a special initializers directory in which arbitrary files may be put. It is the

policy of Rails to ensure that source code included in those files is ran before the application

is actually booted. However, dynamic altering of the initialization process is also available

and this method was utilized in Healer: a special healer.middleware initializer was

programmatically defined its responsibility was to insert the new Rack middleware

component. Rails imposes specific ordering of those modules and each one of them is

responsible for request or response processing on a different logical layer. As a consequence,

it was decided that Healer middleware would be injected after the existing

ActionDispatch::DebugExceptions class, designed to log exceptions. Such ordering would

ensure that it is possible to intercept errors raised in the layer below and perform arbitrary

processing.

The custom middleware component is a simple class with two main functionalities.

Firstly, it performs measurement of time elapsed during each request processing and sends

this information to the Healer Server node, along with necessary identification metadata such

as name of the controller class responsible for the handling of a given request. Secondly, it

tries to rescue an arbitrary exception which might have been risen by the application and

which has not been handled in the subjected app code. If an error was caught, Healer

transmits the necessary incident data to the server. In order not to alter the flow on the host

system, the exception is always re-raised so that it can be naturally propagated as if external

integration was not present.

It is common and intuitive for the developers to perform ad-hoc self-healing actions

by following the aforementioned procedure, i.e. rescuing an error and running special code

which is different from the regular application flow. As error would not be propagated, this

would prevent Healer from intercepting the exception and informing the server component

about an incident. In order to deal with this problem, a special module was designed to

empower the developer to manually send error data to Healer Server. By the use of the

monkey-patching technique, all controller classes responsible for request handling were

equipped with a special method notify_healer. This function accepted an actual exception

object acquired from a rescue block, along with optional custom_data attribute which could

contain arbitrary information. The method definition was identical to the one used in Rack

 35

middleware: an error incident data is sent to the server node. As a result, similar to other error

tracking tools, the following exception handling logic could be implemented.

 Finally, apart from the built-in Rack middleware initialization process, the Healer

library itself required a solution to assign basic configuration options and metadata such as

the address of Healer Server node. In order to address this problem, a singleton Configuration

class instance was created and included within the Healer namespace. Serving as a container

to store options in a key-value manner, it exposed simple interface to the host application

developer, requiring only a simple block in which proper attributes are assigned. Obligatory

attributes were presented in the snippet demonstrating sample usage.

...

 handle_request(params, headers)

rescue => error

 handle_error(error)

 notify_healer(error, custom_data: params)

...

Listing 2. notify_healer demonstration

Healer.setup do |config|

 config.host = “healer-server.myapp.com”

 config.environment = “development”

 config.token = “my_healer_token”

end

Listing 3. Healer gem setup

 36

3.2.1.2. Communication with Healer Server node

3.2.1.2.1. Messaging scenarios

 The main difference between Healer and traditional Application Performance

Management tools results from the fact that the library was assumed to be able to both send

events notifying about the system’s performance and to receive aggregated information from

Healer Server in order to perform self-healing actions. Therefore, a two-way communication

scheme had to be established, which is a highly uncommon requirement for any kind of APM

or error tracking software. Several possible approaches were identified in order to tackle this

architectural challenge in the most optimal way.

 A simplistic solution to the problem could include the definition of standard HTTP

endpoints in both client and server components. As a result, Healer would be set up to make a

HTTP POST call intended to insert performance or error data in Healer Server database,

while the backend node would periodically respond with statistical data aggregated within a

certain period of time which would then be used to decide whether to trigger self-recovery

mechanisms. While being straightforward and easy to implement, this solution possesses

several drawbacks. Most importantly, the host application would expose an additional hidden

HTTP endpoint which is not under direct administration of the system’s developer. The

decision to allow external services to make requests to this resource could be exploited by

providing additional vector of Denial of Service attack which is carried out by routing

extremely high, artificial traffic to this node in order to make the service unavailable to

“standard” users. While all regular endpoints of the system are also vulnerable, a resource

managed solely by an external library could be more easily omitted when implementing

security measures. Moreover, the double-resource setup would also require an adoption of an

authentication scheme in both Healer and Healer Server, resulting with unneeded overhead

imposed on the client library due to the need to store server node credentials and perform

processing on every call. If implemented improperly, this could also lead to severe security

issues in the case of credentials hijacking.

 The other approach assumed the definition of an HTTP endpoint on the server

component, thus technically allowing unidirectional communication only in order to

overcome issues arising a two-way scenario. Healer would send data to Healer Server in a

typical fashion. However, it would also make additional calls aimed to fetch statistical

information in order to know when to trigger self-healing actions. Those requests would be

fired periodically, following a mechanism known as polling. As a consequence, it would

 37

eliminate the need for Healer to introduce an endpoint, as the library would function in a

strictly client-side fashion. On the other hand, this solution would require implementation of

a scheduling mechanism which would trigger aggregated data fetch from Healer Server, thus

greatly increasing the complexity of the client component. Usually being a complex tool by

itself, the scheduler would serve as an additional dependency residing in the host program.

Even if the subjected software already included a background processing solution operating

on the application (e.g. Ruby-based libraries such as Sidekiq or Resque) or system level (e.g.

Cron in Unix-like environment), this would go against the initial requirements assuming to

keep the client as lightweight and unobtrusive as possible.

 Finally, in order to overcome the weaknesses of the aforementioned propositions, a

yet another approach was devised. The solution involved the setup of a WebSocket

communication framework in a simple client-server scenario. Being a newly-established

standard in the web community, the WebSocket protocol wraps an existing synchronous

HTTP implementation into an additional layer of abstraction enabling two parties to directly

exchange messages in a single stream, omitting the standard request-response cycle. What is

more, it enables the client to receive notifications in a number of outlets by utilizing the

publisher-subscribed model, carried out by the means of a subscription to a given channel. In

the context of a project like Healer, WebSocket technology possesses several advantages

which greatly simplifies the need to handle two-way communication. Firstly, a regular client-

server scheme could be maintained. As a result, it was the client’s responsibility to establish

connection with Healer Server and the backend was the only component which would

authenticate the agent with provided login data, hence dropping the requirement to introduce

credentials validation on both ends. Secondly, the duplex character of messaging in

WebSocket protocol would act as a substitute to the polling system because all events would

be transmitted asynchronously in a just-in-time manner, without the need to perform periodic

fetches for new, accumulated data. Figure 8 presents a diagram illustrating the basic flow of a

WebSocket connectivity and messaging mechanism.

 38

Figure 8. WebSockets messaging flow

3.2.1.2.2. WebSocket messaging setup

 In order for the WebSocket scheme to become functional, a connection had to be

established between client and server components. As part of its initialization process, the

Healer gem would try to contact the server node with credentials provided in the

configuration block. As the Ruby language’s standard library does not offer modules

supporting client-side WebSocket communication, an external tool named

WebSocket::Client::Simple3 was used. The connection became a singleton object in Healer

namespace, accessible for custom use-case classes designed to send outbound messages

having an effect on Healer Server as well as to handle incoming events. Those actions can be

divided into two main groups, depending on their overall role in the protocol.

● Technical events

● Regular messages

 Technical events was a group of messages vital to the correct implementation of a

general WebSocket messaging scheme, imposed by the protocol itself. They are usually not

important from the business logic point of view, but need to be handled for the entire stream

to operate properly. Following actions were performed by the Healer gem as part of

initialization process. Firstly, it is the aforementioned connection establishment call to which

the backend responded with a welcome message indicating that a link has been set up.

Secondly, a subscribe call had to be performed in order for the client to receive regular

3 WebSocket::Client::Simple – a Ruby gem supporting client-side Web Socket connectivity
(https://github.com/shokai/websocket-client-simple)

 39

messages in a given stream called ApiChannel. This was followed by a corresponding

confirm_subscription event generated by the backend application. Finally, in order to manage

existing clients, the protocol required an exchange of ping-pong messages indicating that the

agent stays alive and that the stream is not stale. Therefore, each ping command received

from Healer Server was followed by a matching pong event which prevented the backend

from marking the connection as inactive and ultimately removing it from its internal pool.

The table below presents the list of technical events along with their JSON payload content

and description.

Event name Direction Description JSON payload

welcome message server → client sent when
connection is
established

{
 "type":"welcome"
}

subscription client → server sent in order to
subscribe to
ApiChannel
stream

{
 command: "subscribe",
 identifier: {
 "channel": "ApiChannel"
 }
}

subscription confirmation server → client sent as a
response to
subscription to
ApiChannel

{
 "identifier": {
 "channel": "ApiChannel"
 },
 "type": "confirm_subscription"
}

ping server → client sent to check
for client
connection
state; value of
message field is
a UNIX
timestamp

{
 "type": "ping",
 "message": 1510344323
}

pong client → server sent as a reply
to ping

{
 "command": "message",
 "identifier": {
 "channel": "ApiChannel"
 },
 "data": {
 "action": "pong"
 }
}

Table 3. Web Socket technical messages sent between Healer and Healer Server

 On the other hand, regular messages was a group comprising all types of events

supporting the application’s business logic during the system’s runtime. They were primarily

used to pass performance and error data with the use of mechanisms built in Rack

middleware as well as manually triggered by the developer. In order to dispatch a

notification, Healer would spawn a separate thread in which WebSocket transmission took

 40

place so that the main application thread would not be blocked by an external I/O4 operation.

Secondly, the connection was configured to react appropriately to the event passing

aggregated performance data. Similarly as in the case of technical messages, the table below

presents the overview of regular messaging events.

Event name Direction Description JSON payload

response_time client → server sent to pass
transaction
response time
data

{
 "command": "message",
 "identifier": {
 "channel": "ApiChannel"
 },
 "data": {
 "action": "send_data",
 "params": {
 "type": "response_time",
"class_name": "",
"response_time_milliseconds": 520,
"created_at": 1510344323
 }
}

error client → server sent to pass error
incident data

{
 command: "message",
 identifier: {
 "channel":"ApiChannel"
 },
 "data": {
 "action": "send_data",
 "params": {
 "type": "error",
 "class_name": "RuntimeError",
"message": "error",
 "backtrace": "",
 "params": {},
 "created_at": 1510344323
 }
}

set statistics server → client sent to update
aggregated
performance
data

{
 "message": {
 "stats": {
 "error": {
 "MyController": 2,
 "total": 0.5
 },
 "throughput": {
 "MyController": 24,
 "total": 150
 },
 "response_time": {
 "MyController": 90,
 "total": 115.4
 }
 }
 }
}

Table 4. Web Socket regular messages sent between Healer and Healer Server

4 I/O – Input/Output. The term refers to communication between external entities, specifically the computer and
the user or a third-party device.

 41

3.2.1.3. Self-healing actions

 The core functionality of Healer gem is the ability to define custom self-healing

actions if a certain condition related to the application performance is met. In order to make it

as simple and flexible for the developer as possible, a friendly programming interface had to

be implemented so than an arbitrary action could be performed.

The solution used in Healer greatly resembles the way Ruby on Rails allows to

declaratively handle certain type of errors in controller files. Specifically, the framework

exposes the rescue_from method which may be defined directly in the class body. This

function accepts exception type which is to be handled as well as a block which is executed

whenever a given error was raised during request processing in a given controller class.

Similarly, Healer included methods enabling the developer to declare custom actions to be

ran during request processing. They would be executed whenever the subjected system

encounters a specific performance-related condition. The table below presents the list of

available functions along with their definition.

Method name Arguments Behaviour

when_error_rate_between from_percentage (Numeric),
to_percentage (Numeric),
method_name (String, optional),
only (String, optional),
total (String, optional),
block (Block)

If saved error rate is between
from_percentage and
to_percentage, perform action.

when_average_response_time_bet
ween

from_time_milliseconds
(Numeric),
to_time_milliseconds (Numeric),
method_name (String, optional),
only (String, optional),
total (String, optional),
block (Block)

If saved response time is between
from_percentage and
to_percentage, perform action.

when_average_throughput_per_m
inute_between

from (Numeric),
to (Numeric),
method_name (String, optional),
only (String, optional),
total (String, optional),
block (Block)

If saved throughput per minute is
between from and to, perform
action.

when_average_throughput_per_se
cond_between

from (Numeric),
to (Numeric),
method_name (String, optional),
only (String, optional),
total (String, optional),
block (Block)

If saved throughput per second is
between from and to, perform
action.

Table 5. Healing methods exposed by Healer gem

 42

 In order to make the interface consistent, every function accepts the name of a method

to be called (the method_name argument). In case this parameter was not provided, Healer

would execute the Ruby block. If neither the method name, nor block were provided, an error

would be raised due to incorrect usage. Furthermore, the only option allows to specify that a

recovery action should take place only for a specific controller action, i.e. specific HTTP

method operating on a resource. Finally, it is possible to pass the total parameter indicating

that self-healing code should be ran in case a given performance-related condition is met in

all possible endpoints.

As a result, a simple and expressive means of defining recovery actions was devised.

The following code snippets demonstrate sample usage of two of self-healing methods,

invoked with an existing method name and a block.

class MyController

 when_average_response_time_between(

 100,

 150,

) { run_recovery_action; notify_apm }

 def run_recovery_action

 # recovery action body

 end

end

Listing 4. Sample definition of a recovery action with a block

 43

3.2.2. Server-side component

3.2.2.1. Data architecture

 By the project’s initial design, and contrary to the client application, Healer Server

had to include a solution supporting data persistence. Consequently, all required database

entities had to be determined, along with the definition of their content and relationships with

other objects. It was decided that App and Entry tables would be necessary.

The role of App model was to allow Healer Server to operate with multiple client

instances, each communicating from a different system. A single App record included general

data of an application, but its main responsibility was client authentication so that unwanted,

unauthorized traffic could be prevented. As a result, an App instance stored a special token

attribute, designed to be compared during client connection.

Taking advantage of the character of a non-relational database, Entry records were

intended to be a simple document-like entities, able to store arbitrary incident data without

the need to introduce strict relationship structure. A single object could be a notice of both an

error or a transaction response time, therefore message, message and

response_time_milliseconds fields were included in table definition and the logical separation

was carried out by the type attribute. Finally, in order to introduce and enforce ownership of

particular Entry record by Apps, an additional app_id field was added, serving as a form of a

foreign key. As a result, a pseudo-relationship was established in which all Entries created

class MyController

 when_error_rate_between(

 0.5,

 1.0,

 :run_recovery_action,

 only: :index

)

 def index; end

 def run_recovery_action

 # recovery action body

 end

end

Listing 5. Sample definition of a recovery action with a method name

 44

during application runtime belonged to a particular App in order to support correct data

aggregation and prevent accidental mix-up. Figure 9 presents detailed definition of both

tables comprising Healer Server schema.

Figure 9. Healer Server database structure

3.2.2.2. Communication with client application

 Healer Server was designed as a standard Ruby on Rails application. However, while

the framework was initially designed and most often used for the processing of typical,

synchronous HTTP requests, a WebSocket handler had to be implemented in order to comply

with Healer. From version 5 on, Ruby on Rails includes a built-in server-side WebSocket

component named Action Cable and the decision was made to use this solution instead of

third-party tools.

 Thanks to the fact that the framework automatically handles and manages a new client

connecting, a stream had to be established so that bidirectional communication could take

place. A single WebSocket channel named ApiChannel was defined in order to accept calls

made from the agent. The stream exposed several methods required to support the desired

functionalities.

Firstly, the pong action was defined in order to save and manage the agent’s state.

Whenever client responded to ping, Healer Server would mark the connected application as

seen by updating the object’s last_seen_at attribute. Secondly, the backend interface included

the send_data method whose responsibility was to create new Entry record associated with

the authenticated App. Finally, comprising Healer Server’s core element, the subscribe and

unsubscribe actions had to be supported in order to indicate the start and finish times of

performance data aggregation and transmission.

The server component was assumed to pass statistical information in a continuous,

periodic manner. Therefore, a scheduling mechanism had to be implemented so that the client

 45

application could fire self-healing action in an appropriate time. Due to its popularity and

distributed nature, the Sidekiq background job processor was selected as a tool of choice.

Most importantly, the library supported handling of multiple parallel tasks which were to be

executed in a process fully separate from the main application thread. One such worker (the

StatsWorker class) was defined and was designed to be enqueued whenever the agent

subscribes to ApiChannel. Every 5 seconds, the job would collect aggregated performance

data based on calls made by the client during the last 1 minute. The payload included all

information about the state of the host project: error rate (per error class and system-wide

total), throughput (per controller class and system-wide total) and average response time (per

controller class and system-wide total). Once it had been collected and calculated,

StatsWorker instance would transmit the data via ApiChannel to an appropriate subscriber.

Afterwards, it was the responsibility of Healer to process the incoming message. Finally,

whenever the complimentary unsubscribed action was called, the server would remove the

current application’s job from Sidekiq’s scheduled set in order to stop processing, as no

statistical data could be received from this moment on. Additionally, for information

purposes, the App record would be marked as disconnected.

 46

4. Conclusion

4.1. Final overview

 The goal of this thesis was to characterize the idea of a self-healing system based on a

software library supporting automated recovery in a modern, dynamic web application. The

final result comprised a working prototype of Healer, a Ruby gem which could be loaded into

any Rack-based Ruby web solution, in particular one written with the use of a popular Ruby

on Rails framework. Complimentary to Healer, the Healer Server backend application was

developed, serving as means to collect, store and aggregate the host’s performance metrics.

Relying on the process of continuously sending raw data and receiving aggregated

results via the non-blocking WebSocket channel, the entire solution proved successful in

supporting application- and system-level self-recovery mechanisms. Healer was able to react

to the most important classes of faults: ones related to high error rate, long average response

times and large requests throughput, both when a problem occurred on an entire system level

as well as for a single transaction. At the same time, taking advantage of features offered by

the Ruby programming language, it was possible to make the interface simple and flexible by

allowing the developer to define an arbitrary self-recovery action.

Healer and Healer Server are by no means complete. Although most important

functionalities were implemented, the entire solution could be improved in numerous ways.

Most importantly, the agent library could expose many more checks initiating self-healing

actions in order to address a larger spectrum of use cases. Along with Healer Server, it could

also be programmed to send more detailed incident data, for example information and context

of the currently running web server thread or process. Finally, similar to traditional APM and

error tracking tools, Healer Server would benefit from introduction of a rich web interface in

which users could view performance graphs and browse through a number of analytical

reports in order to gain better insight on the overall application’s state.

 47

4.2. Appendix A - CD content

The following directories have been included in the CD attached to this thesis

• \DOC

o Electronic copy of the thesis

• \SOURCE

o Source code of Healer and Healer Server

 48

4.3. Appendix B – installation manual

The software has been designed to work on Unix-based systems, in particular Linux

and macOS.

Healer Server requires the following software installed:

• Ruby, version at least 2.3;

• The Bundler Ruby gem;

• MongoDB database server.

In order to run the application, the MongoDB server has to be started. Afterwards,

bundle install and rails server commands need to be ran in order to load required

dependencies and start the server in development mode. By default it will accept HTTP

connections on port 3000. Finally, an App record set up with name and token values has to be

created in order to accept connections from the agent.

 The Healer gem can be installed in any Ruby-based project using Bundler. In order to

load the dependency, the following line has to be added to the application’s Gemfile.
gem “healer”, path: “<path_to_healer_gem_directory>”

Prior to running the program, bundle command needs to be executed. Additionally,

configuration options need to be filled in, as described in the implementation section.

Healer.setup do |config|

 config.host = “healer-server.myapp.com”

 config.environment = “development”

 config.token = “my_healer_token”

end

 49

5. Bibliography

1. [GH88] D. Gelperin, B. Hetzel, “The Growth of Software Testing”, CACM, Vol. 31,

No. 6, 1988

2. [BT76] T.E. Bell, T. A. Thayer, “Software Requirements: Are they really a

problem?”, Proceedings of the 2nd international conference on Software engineering,

IEEE Computer Society Press, 1976

3. [Marick03] B. Marick, “Agile testing directions: tests and examples”,

http://www.exampler.com/old-blog/2003/08/21.1.html#agile-testing-project-1, 2003,

retrieved July 2018

4. [SWEBOK14] “SWEBOK 3.0: IEEE Guide to Software Engineering Body of

Knowledge”, http://www4.ncsu.edu/~tjmenzie/cs510/pdf/SWEBOKv3.pdf, 2014,

retrieved July 2018

5. [HvHMO2017] C. Heger, A. van Hoorn, M. Mann, D. Okanović, “Application

Performance Management: State of the Art and Challenges for the Future”, 8th

ACM/SPEC, 2017

6. [Dragich12] L. Dragich, “Proritizing Gartner’s APM model”,

http://www.apmdigest.com/prioritizing-gartners-apm-model, 2012, retrieved July

2018

7. [Beck99] K. Beck, “Extreme Programming Explained: Embrace Change”, Addison-

Wesley, 1999

8. [JenkinsDocs], “Jenkins User Documentation: Pipelines”,

https://jenkins.io/doc/book/pipeline/, retrieved July 2018

9. [JZRS2007], M. Jiang, J. Zhang, D. Raymer, J. Strassner, “A Modeling Framework

for Self-Healing Software Systems”, https://st.inf.tu-

dresden.de/MRT07/papers/MRT07_Jiangl_etall.pdf, 2007, retrieved July 2018

10. [Keromytis03], Keromytis A., “The Case for Self-Healing Software”, IOS Press,

2003

11. [TechConversations] “Technology Conversations: Self-Healing Systems”,

https://technologyconversations.com/2016/01/26/self-healing-systems/, retrieved July

2018

12. [Nelson01] A. Nelson, W.Nelson, "Building Electronic Commerce with Web

Database Constructions", Addison Wesley, 2001

 50

13. [ServerScripts] R. McCool, “Server Scripts” memo,

http://1997.webhistory.org/www.lists/www-talk.1993q4/0485.html, retrieved July

2018

14. [RubyPhilosophy] “The Philosophy of Ruby. A Conversation with Yukihiro

Matsumoto”, https://www.artima.com/intv/ruby.html, retrieved July 2018

15. [Martin08] Martin, R., “Clean Code: A Handbook of Agile Software Craftsmanship”,

Prentice Hall, 2008

16. [RailsGuides] “Getting Started with Rails”,

http://guides.rubyonrails.org/getting_started.html, retrieved July 2018

17. [GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements

of Reusable Object-Oriented Software”, Addison-Wesley, 1995

18. [MongoArchitecture] “MongoDB Architecture”,

https://www.mongodb.com/mongodb-architecture, retrieved July 2018

 51

6. Index of figures

Figure 1. Waterfall and Agile software development models ... 6

Figure 2. Agile Testing Quadrants matrix .. 7

Figure 3. Sample New Relic transaction breakdown .. 12

Figure 4. Histogram query result in New Relic .. 14

Figure 5. Server-side request-response flow .. 21

Figure 6. Healer directory structure ... 32

Figure 7. Healer Server directory structure .. 33

Figure 8. WebSockets messaging flow .. 38

Figure 9. Healer Server database structure ... 44

Listing 1. instance_eval demonstration .. 25	
Listing 2. notify_healer demonstration .. 35	
Listing 3. Healer gem setup ... 35	
Listing 4. Sample definition of a recovery action with a block ... 42	
Listing 5. Sample definition of a recovery action with a method name 43	

Table 1. Sample Jenkins build steps .. 15	
Table 2. Programming languages with corresponding server-side implementations 21	
Table 3. Web Socket technical messages sent between Healer and Healer Server 39	
Table 4. Web Socket regular messages sent between Healer and Healer Server 40	
Table 5. Healing methods exposed by Healer gem .. 41	

